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Numerical studies on non-linear free surface flow using
generalized Schwarz–Christoffel transformation
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SUMMARY

This paper deals with a technique to transform a free surface flow problem in the physical domain with
an unknown boundary to a standard domain that has a fixed boundary. All the difficulties in the physical
domain are reduced to finding an unknown mapping function that can be solved iteratively in a standard
domain. A derivation is first presented to express an analytic function in terms of the boundary value of
its imaginary part. Using a relationship between boundaries of the standard and the physical domains,
a formula for the generalized Schwarz–Christoffel transformation is then developed. Based on the
generalized Schwarz–Christoffel integral and the Hilbert transform, a pair of non-linear boundary
integro-differential equations in an infinite strip is formulated for solving fully non-linear free surface
flow problems. The boundary integral equations are then discretized with quadratic elements in an
untruncated standard domain and solved by the Levenberg–Marquardt algorithm. Several examples of
supercritical flow past obstructions are provided to demonstrate the flexibility and the accuracy of the
proposed numerical scheme. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: Green’s function method; singular integral; Levenberg–Marquardt algorithm; supercriti-
cal flow

1. INTRODUCTION

Since the last century, free surface flow has been investigated by numerous researchers.
Pioneering work can be found in Reference [1]. Owing to recent advances in the capabilities of
computer systems, the fully non-linear free surface flow problems can now be tackled. The
challenge associated with the solution of a fully non-linear free surface flow problem is
twofold. One is that only a part of the boundaries, i.e. the solid boundary, in the physical
domain is given and the other is that a non-linear free surface condition, derived from
the Bernoulli equation, has to be imposed on an unknown boundary of the free sur-
face. Furthermore, from a computational point of view, the numerical computation in an
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untruncated infinite domain with the involvement of the singular integrals is a source of
headache for the researchers. It is noted that the boundary integral equation method
formulated in the physical domain is not directly applicable to this kind of problem. It is
mainly due to the fact that the boundary integral equation method is based on a given
geometry of the physical domain. If a part of the boundary in the physical domain is not
known, the solution, which entirely depends on the boundary, has to be determined using a
trial and error approach, such as

1. guessing the unknown part of the boundary as well as the boundary condition;
2. solving the boundary integral equation;
3. checking the boundary condition on the unknown part of the boundary;
4. based on the difference of the boundary condition on the unknown part of the boundary,

guessing a new boundary;
5. repeating the whole process and hoping that eventually the unknown part of the boundary

and the solution will converge.

This interesting topic has been studied intensively in several types of physical problems, such
as the free surface flow over a polygonal obstacle [2–7], over a step [8], over a semi-circular
obstruction [9,10], as well as a waterfall [11–15]. Some other applications in the engineering
field can be found in References [16–21]. Most of these studies are based on a conformal
mapping technique, which maps a variety of standard domains, such as an upper-half plane
[2,6,14,19], a unit disk [16], the upper-half of a unit disk [7,18,19] and an infinite strip [4,8],
onto the physical domain with an unknown boundary. The special features of this technique
are

1. The non-linear free surface condition can be transformed analytically and applied to a fixed
boundary in the standard domain. This is because the unknown free surface in the physical
domain can be represented by the mapping function in the standard domain.

2. The unknown mapping function in the standard domain is expressed in terms of the
complex velocity in the physical domain through a relationship between the boundaries of
the physical and standard domains. Once the mapping function is solved, the solution for
the fully non-linear free surface flow problem can be found.

3. No approximation of the boundary in the standard domain is necessary in the numerical
computation of the boundary integral equations and the computation can be carried out in
an untruncated standard domain under certain assumption.

The theory behind this kind of conformal mapping, in fact, is the so-called generalized
Schwarz–Christoffel transformation [22,23], which is an inverse mapping, i.e. mapping a
standard domain onto a physical domain, and has to be solved iteratively. Consequently, there
are two levels of iterations involved in the numerical solution of the non-linear free surface
flow. One being the iterations for satisfying the non-linear free surface condition in the
standard domain and the other the inverse mapping for satisfying the geometry of the solid
boundary in the physical domain, such as the bottom shape of a free surface flow over an
obstruction.

In this paper, Section 2 deals with the generalized Schwarz–Christoffel transformation with
an application to map an upper-half plane onto an elongated channel with infinite length, such
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as the configuration of the flow past an obstacle or a water fall in the physical domain. In
Section 3, a discussion of the formulation of the boundary integral equations for solving a fully
non-linear free surface flow problem in the standard domain of the infinite strip is presented.
The techniques for discretizing the boundary integral equations, numerical treatment of the
non-linear free surface condition with both integral and differential methods, and a two-level
iteration scheme for obtaining a converged solution of the non-linear, free surface flow
problem are introduced in Section 4. To demonstrate the accuracy and efficiency of this
numerical scheme, Section 5 presents the computational results of supercritical flow past a
triangular obstruction with different heights and a ramp with different heights and angles. The
detailed numerical treatment of the singular integrals involved in the discretized boundary
integral equations is also included in Appendix A.

2. GENERALIZED SCHWARZ–CHRISTOFFEL TRANSFORMATION

This section summarizes the generalized Schwarz–Christoffel transformation for mapping an
arbitrary standard domain onto an arbitrary physical domain [23]. It is based on the boundary
integral expression of an analytic function, a relationship between the boundaries of the
physical and standard domains and the Green’s function of the first and the second kinds for
the physical domain. The formula is then applied to a special standard domain, namely, an
upper-half plane.

2.1. Arbitrary standard domain

Assume that the physical domain Rz, bounded by the curve sz, and the corresponding standard
domain Rz, surrounded by the curve sz, are on the z- and z-plane respectively.

The mapping function, z(z), which maps an arbitrary standard domain onto an arbitrary
physical domain, is given by [23]

dz
dz

=D1 ef(z) or z(z)=D1
& z

ef(z0) dz0+D2 (1)

where D1 and D2 are arbitrary constants.
The auxiliary function f(z) in Equation (1) is defined as

f(z)= −{G (2)(P, Q)[u( (Q)−uz(Q)]}Qs

Qe

+
&

sz

[u( (Q)−uz(Q)]
!(G (2)(P, Q)

(sQ

+ i
(G (1)(P, Q)
(nQ

"
dsQ+C (2)

where G (1) and G (2) are Green’s function of the first and second kind of the physical domain
Rz, and u( =uz(sz(sz)) and uz are tangent angles at the corresponding point on the boundary sz

and sz respectively.
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2.2. Standard domain of an upper-half plane

Let the standard domain Rz be an upper-half plane. It is clear that the boundary sz of the domain
includes the j-axis and the boundary ss of a semi-circle with a sufficiently large radius R. Green’s
functions of the first and second kinds for this domain are

G (1)(j0, h0; j, h)=
1

2p
{log 
(j0−j)2+ (h0−h)2− log 
(j0−j)2+ (h0+h)2} (3)

G (2)(j0, h0; j, h)=
1

2p
{log 
(j0−j)2+ (h0−h)2+ log 
(j0−j)2+ (h0+h)2} (4)

Substituting Equation (4) into Equation (2) gives the auxiliary function for mapping an
upper-half plane onto an arbitrary physical domain,

f(z)= −
1
p

!
[u( (j) log 
(j0−j)2+h2]−�� +

&�
−�

u( (j)
z−j

dj
"

+C (5)

If the physical domain is an upper-half plane bounded by a curved boundary and uz=0 as
x�9�, then the auxiliary function f(z) reduces to

f(z)= −
1
p

&�
−�

u( (j)
z−j

dj+C (6)

On the other hand, if the contour of the physical domain is an infinite strip with a curved
boundary (see Figure 1), four points, a, b, c and d at x��, may be selected that correspond
to ja, jb, jc and jd on the j-axis in the standard domain (z-plane). Let u1, u2 and u3 be tangential
angles along the segments ab, bc and cd in the physical domain respectively. Since u1, u2 and
u3 are constant (in fact, they are 0, p/2 and p), the auxiliary function f(z) is written as

f(z)

= −
1
p

!& ja

− i

u( (j)
z−j

dj+u1
& jb

ja

1
z−j

dj+u2
& jc

jb

1
z−j

dj+u3
& jd

jc

1
z−j

dj

+
&�

jd

u( (j)
z−j

dj
"

+C

= −
1
p

!& ja

−�

u( (j)
z−j

dj+
p

2
log(z−jb)+

p

2
log(z−jc)+

&�
jd

u( (j)
z−j

dj
"

+C (7)

As points b and c in the physical domain tend to infinity, the corresponding points jb and jc

in the z-plane will approach 0. The auxiliary function f(z) is thus reduced to

f(z)= − log z−
1
p

!&�
−�

u( (j)
z−j

dj
"

+C (8)
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Figure 1. Mapping of an elongated channel.

Consequently, the generalized Schwarz–Christoffel transformation, which maps the upper-half
of the j-plane to an elongated channel with infinite length in the z-plane, is expressed as

dz
dz

= −
1

pz
exp

!
−

1
p

&�
−�

u( (j)
z−j

dj
"

or

z(z)= −
& z 1

pz0

exp
!

−
1
p

&�
−�

u( (j)
z0−j

dj
"

dz0+D2 (9)

As the field point z approaches the j-axis, the integral in Equation (9) becomes a Cauchy-type
integral,

z(j)= −
& j

−�

1
ps

exp
!

−
1
p

&�
−�

u( (t)
s− t

dt+ iu( (s)
"

ds+D2 (10)

3. FORMULATION OF THE FREE SURFACE FLOW PROBLEM

For simplicity, consider a free surface flow past an obstacle as shown in Figure 2.
It is assumed that the fluid is inviscid and incompressible, and the flow is irrotational and

steady. Far upstream, the depth and the velocity of the flow are h and U0 respectively. The
gravity is acting in the −Y-direction. The mathematical problem is to find a complex
potential, F(X, Y)=f(X, Y)+ ic(X, Y), satisfying the following boundary conditions in the
z-plane:
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Figure 2. Free surface flow past an obstacle.

1. On the solid boundary (bottom), fluid particles cannot penetrate the surface, i.e.

(f

(n
=0 or c=constant (11)

where n� is the normal of the bottom surface.
2. On the free surface, the Bernoulli equation has to be satisfied

Pa

r
+

1
2

Q2+gY=constant=
Pa

r
+

1
2

U0
2+gh (12)

where Pa is the atmospheric pressure, r is the density, g is the gravitational constant and
Q2=u2+62 is the magnitude of the velocity Vb of a fluid particle. It is noted that the
right-hand-side of Equation (12) is evaluated at the free surface far upstream.

Choosing h and U0 as the reference length and velocity, and introducing the non-
dimensional variables shown in Equation (13),

p=
P

rU0
2 ; q=

Q
U0

; y=
Y
h

(13)

the free surface condition (12) reduces to

q2+
2

Fn
2 (y−1)=1 on the free surface (14)

where Fn=U0
2/
gh is the depth Froude number and the pressure, Pa, on the free surface is

assumed to be zero.
It is noted that if the magnitude q(x, y) of the non-dimensional velocity is known, then the

non-dimensional pressure p(x, y), i.e. the pressure coefficient, can be evaluated from
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p(x, y)=
1
2

[1−q(x, y)2]+
1

Fn
2 (1−y) (15)

3.1. Formulation of the integral equation

If the upper half of the z-plane is chosen to be a standard domain, the complex potential F( (z)
due to a sink located at z=0 is given by

F( (z)= −
1
p

log z=f(j, h)+ ic(j, h) (16)

Using the chain rule and the generalized Schwarz–Christoffel formula shown in Equation
(10), the complex velocity in the z-plane can be expressed as

W(z)=
dF
dz

=
dF(
dz

dz

dz
=exp

!1
p

&�
−�

u( (t)
z− t

dt
"

(17)

Furthermore, the complex velocity W(z) can also be expressed in terms of the velocity
components, u and 6, in the z-plane,

W(z)=u(x, y)+ i6(x, y)=q(x, y) e− iu(x,y) (18)

where q=
u2+62 and u= tan−1(u/6).
By combining Equations (17) and (18), and letting the field point z in Equation (17)

approach the real j-axis in the z-plane, you obtain

W(z(z))�z�j=
!dF(

dz

dz

dz
"

z�j

=exp
!1

p

&�
−�

u( (t)
z− t

dt− iu( (j)
"

= q̄(j) e− iu( (j) (19)

where q̄(j)=q(x(j, 0), y(j, 0)).
By taking the log of Equation (19), you finally arrive at

p̄(j)= − log q̄(j)= −
1
p

&�
−�

u( (t)
j− t

dt (20)

As a result, the mapping function z(j), which maps the boundary in the z-plane to that in the
z-plane, can be simply expressed in terms of q̄(j) and u( (j),

z(j)= −
& j

�

1
ps

q̄(s)−1 eiu( (s) ds (21)

It also gives a simple expression for dx/dj and dy/dj,

dx
dj

= −
1

pj

cos u( (j)
q̄(j)

,
dy
dj

= −
1

pj

sin u( (j)
q̄(j)

(22)
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Instead of solving the mapping function z(z) directly, an analytic function H(z) in the z-plane,
which is composed of two real functions, p̄(z)= − log q̄(z) and u( (z), may be defined as
follows [2]:

H(z)=
p̄(z)+ iu( (z)

i 
z
(23)

Applying the Hilbert transform, which expresses the real part of an analytic function in terms
of the imaginary part and vice versa, to function H, a set of integral equations is then obtained

p̄(jb)=
1
p

!& 0

−�

'−jb

− tb

u( (tb)
jb− tb

dtb+
&�

0

'−jb

tf

p̄(tf)
jb− tf

dtf

"
for jbB0 (24)

u( (jf)= −
1
p

!& 0

−�

' jf

− tb

u( (tb)
jf− tb

dtb+
&�

0

'−jf

tf

p̄(tf)
jf− tf

dtf

"
for jf\0 (25)

In the above equations, jb and jf are used for denoting −�BjB0 and 0BjB�, as shown
in Figure 3.

To avoid the difficulties caused by the singular point z=0 in the z-plane and maintain an
untruncated boundary in the standard domain for the numerical computation, this pair of
integral equations can be further transformed to an infinite strip in the F( -plane with the
mapping function

F( (z)= −
1
p

log z=f(z)+ ic(z) (26)

Consequently, the integral equations (24) and (25) are transformed to

Figure 3. Boundaries in x- and F( -plane.
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p̃(fb)= −
&�

−�

u0 (sb)

2 sinh
p

2
(fb−sb)

dsb+
&�

−�

p̃(sf)

2 cosh
p

2
(fb−sf)

dsf, for −�BfbB�

(27)

u0 (ff)=
&�

−�

u0 (sb)

2 cosh
p

2
(ff−sb)

dsb−
&�

−�

p̃(sf)

2 sinh
p

2
(ff−sf)

dsf, for −�BffB�

(28)

3.2. Formulation of the free surface conditions

Differentiating the free surface condition shown in Equation (14) with respect to j gives

Fn
2q̄

dq̄
dj

+
dy
dj

=0 (29)

Substituting Equation (22) into Equation (29), integrating with respect to j and transforming
to the F( -plane, the integral form of the free surface condition in the F( -plane is thus obtained,

p̃(ff)= − log q̃(ff)= −
1
3

log
!

1−
3

Fn
2

& ff

−�

sin u0 (sf) dsf
"

(30)

where ff is along the top part of the straight channel as shown in Figure 3.
Based on the integral form of the free surface condition (30), it is not difficult to derive the

differential form of the free surface condition in the F( -plane,

dp̃
dff

=
1

Fn
2 e3p̃(ff ) sin u0 (ff) (31)

4. NUMERICAL COMPUTATION

In this section, the bottom of the physical domain (z-plane) is assumed to have a polygonal
surface, so that the first integral in Equation (27) can be carried out analytically. Section 4.1
presents a method to maintain an untruncated domain in the numerical computation. The
standard domain, i.e. an infinite strip in the F( -plane, is divided into three regions, up, mid and
downstream. The unknown functions p̃ and u0 in the upstream (downstream) are assumed to be
constants, which are identical to their numerical values at the first (last) grid point in the
midstream. Consequently, only a portion of the integral equation has to be discretized.

A two-level iteration scheme, i.e.

1. the numerical treatment of the non-linear free surface condition in the standard domain,
and

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 745–772



J. M. CHUANG754

2. the inverse mapping of the generalized Schwarz–Christoffel transformation for the bottom
geometry,

to obtain a converged solution for the free surface flow past a polygonal bottom surface is
described in detail in Section 4.2.

4.1. Discretization of integral equation

Consider a free surface flow past an obstacle with a polygonal surface as shown in Figure 4.
The integral equation to be solved is given by Equation (27), in which the first integral only

relates the bottom shape. If the shape of the polygonal bottom is given and the corresponding
points (in the F( -plane) to the vertices of the bottom in the physical domain (z-plane) are
assumed, this integral can be carried out analytically,

&�
−�

u0 (sb)

2 cosh
p

2
(ff−sb)

dsb= −
1
p

%
Na−1

i=1

(ai+1−ai) tan−1�sin
p

2
(ff−sbi

)
n

(32)

The second integral in Equation (28) can be divided into three parts based on the variation
of the velocity in the up, mid and downstreams, as shown in Figure 5, with an assumption of
no waves propagating downstream

Figure 4. Obstacle with polygonal surface.

Figure 5. Up, mid and downstream in the F( -plane.
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−
&�

−�

p̃(sf)

2 sinh
p

2
(ff−sf)

dsf= −
& a

−�

p̃(sf)

2 sinh
p

2
(ff−sf)

dsf−
& b

a

p̃(sf)

2 sinh
p

2
(ff−sf)

dsf

−
& −�

b

p̃(sf)

2 sinh
p

2
(ff−sf)

dsf (33)

Using the quadratic elements to discretize the free surface in the midstream (aBffBb) into
N elements, the second integral is then approximated by

−
&�

−�

p̃(sf)

2 sinh
p

2
(ff−sf)

dsf=−
& a

−�

p̃*1,1

2 sinh
p

2
(ff−sf)

dsf− %
N

j=1

& sfj+1

sfj

%
3

k=1

p̃*j,kNk(g(sf))

2 sinh
p

2
(ff−sf)

dsf

−
& −�

b

p̃*N−1,3

2 sinh
p

2
(ff−sf)

dsf (34)

where p̃*j,k is the numerical value of the function p̃ at the node k in element j and Nk(g(sf)),
k=1, 2, 3, are shape functions of the quadratic element shown below,

N1(g)=
1
2

g(g−1), N2(g)=1−g2, N3(g)=
1
2

g(g+1) (35)

where

g(sf)=2
sf−sfi

sfi+1
−sfi

−1

It is noted that there are three nodes in each quadratic element.
Substituting Equations (32) and (34) into Equation (28) leads to a set of relationships

between the tangential angles, u0 i
f, and the log of the magnitudes of the velocities, p̃ i

f, at the grid
points on the free surface

u0 i
f=ci+ %

2N+1

j=1

gijp̃ j
f, for i=1, 2, 3, . . . , 2N+1 (36)

where

ci= −
1
p

%
Na−1

k=1

(ak+1−ak) tan−1�sinh
p

2
(ffi

−sbk
)
n

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 745–772
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and

gi,1= −
& a

−�

1

2 sinh
p

2
(ffi

−sf)
dsf−

& sf 2

sf 1

N1(g(sf))

2 sinh
p

2
(ffi

−sf)
dsf

gi,2j+1= −
& sfj+1

sfj

N3(g(sf))

2 sinh
p

2
(ffi

−sf)
dsf−

& sfj+2

sfj+1

N1(g(sf))

2 sinh
p

2
(ffi

−sf)
dsf,

for j=1, 2, . . . , N−1

gi,2j= −
& sfj+1

sfj

N2(g(sf))

2 sinh
p

2
(ffi

−sf)
dsf, for j=1, 2, . . . , N

gi,2N+1= −
& sfN+1

sfN

N3(g(sf))

2 sinh
p

2
(ffi

−sf)
dsf−

&�
sfN+1

1

2 sinh
p

2
(fi−sf)

dsf

It is clear that the diagonal terms, g(i, j ), in the g matrix involve singular integrals. A detailed
procedure to remove the singularity from these integrals in the numerical computation is
described in Appendix A.

4.2. Iteration method

This section describes a two-level iteration scheme to solve non-linear free surface flow. In
Section 4.2.1, it is assumed that the corresponding points, a1, a2, . . . , aN

a
−1, on the fb-axis in

the F( -plane to the vertices, A1, A2, . . . , AN
a
−1, of the polygonal surface at the bottom of the

physical domain (z-plane) are given so that the first integral in Equation (28) can be carried
out analytically. Based on Equation (30) and the shape functions used by the function u0 on the
free surface, the integral method is a straightforward numerical integration. The differential
method that is based on Equation (31) is more sophisticated. The Taylor series expansion
method is employed in this numerical scheme to obtain a highly accurate numerical solution
for Equation (31) with a truncation error of O(Df f

6) and can be extended to obtain a
numerical solution of any order. After a converged solution is obtained for Equation (28) with
the Levenberg–Marquardt algorithm [24], an iteration method is proposed in Section 4.2.2 to
compute the vertices A1% , A2% , . . . , AN

a
−1 of the bottom surface in the physical domain through

the mapping function to match the given vertices A1, A2, . . . , AN
a
−1.

4.2.1. Free surface. It is seen that there are 2N+1 equations in Equation (36) to express the
relationships of 2× (2N+1) unknowns (2N+1 u0 fs and 2N+1 p̃ fs) at the grid points on the
free surface in the standard domain. Consequently, 2N+1 non-linear equations can be
established
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Ii(u0 1
f, u0 2

f, . . . , u0 2N+1
f )=u0 i

f−ci− %
2N+1

j=1

gijp̃ j
f=0 for i=1, 2, . . . , 2N+1 (37)

To solve 2× (2N+1) unknowns, another set of 2N+1 equations has to be obtained from
the transformed free surface condition, Equation (30) or (31), which is a non-linear relation-
ship between u0 and p̃ at each grid point on the free surface. The first derivative of p̃ with
respect to u0 required in the process of solving the non-linear equations can be obtained with
the chain rule

dp̃
du0 =

dp̃
dff

, du0
dff

(38)

To compute dp̃/dff in Equation (38), the numerical value of p̃ at each grid point is required.
It can be obtained by two different approaches.

1. Integral method (based on Equation (30))
Since in element k, the function u0 is approximated by u0 2k−1

f N1(ff)+u0 2k
f N2(ff)+u0 2k+1

f N3(ff),
the integral form of the free surface condition, Equation (30), can be carried out numerically
by

p̃2i+1
f = −

1
3

log
!

1−
3

Fn
2 %

i

k=1

& ffk+1

ffk

sin[u0 2k−1
f N1(ff)+u0 2k

f N2(ff)+u0 2k+1
f N3(ff)] dff

"
p̃2i

f = −
1
3

log
!

1−
3

Fn
2 %

i−1

k=1

& ffk+1

ffk

sin[u0 2k−1
f N1(ff)+u0 2k

f N2(ff)+u0 2k+1
f N3(ff)] dff

−
3

Fn
2

& f*f

ffi

[u0 2i−1
f N1(ff)+u0 2i

f N2(ff)+u0 2i+1
f N3(ff)] dff

"
(39)

where i=1, 2, . . . , N, f*f = (ffi
+ffi+1

)and p̃1
f =0, which is equivalent to assuming that far

upstream, the velocity is unity.

2. Differential method (based on Equation (31))
The differential form of the free surface condition shown in Equation (31) is a first-order
ordinary differential equation (ODE) with an initial condition of p̃(−�). It can be solved by
the finite difference method. However, to obtain a more accurate solution, the Taylor series
expansion method up to fifth-order accuracy is adopted in this numerical scheme. For
simplicity, the superscript ‘f ’ is neglected from the variables u0 f and p̃ f in the following
derivations.

An approximate solution of Equation (31) can be written as

p̃(ff+Dff)= p̃(ff)+
Dff

1!
p̃ %(ff)+

Df f
2

2!
p̃ %%(ff)+

Df f
3

3!
p̃ %%%(ff)+

Df f
4

4!
p̃ iv(ff)+

Df f
5

5!
p̃v(ff)

+O(Df f
6) (40)
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The derivatives of p̃ with respect to ff can be derived straightforward from Equation (31),

p̃ %=p1, p̃ %%=3p̃ %+u0 %p2, p̃ %%%=6p̃ %p̃ %%+p3p4−u0 %2p̃ %,

p̃ iv=6p̃ %%2+6p̃ %p̃ %%%+p4p5+p3p6−2u0 %u %%p̃ %−u0 %2p̃ %%.

p̃v=12p̃ %%p̃ %%%+p7+p4p8+2p5p6+p3p9+p10 (41)

where

p1=
1

Fn
2 e3p̃ sin u0 , p2=

1
Fn

2 e3p̃ cos u0 , p3= (p̃ %%−3p̃ %2), p4=3p̃ %+
u0 %%
u0 % ,

p5= p̃ %%%−6p̃ %p̃ %%, p6=3p̃ %%−
u0 %%2

u0 %2 , p7=6(p̃ %%p̃ %%%+6p̃ %p̃ iv), p8= p̃ iv−6p̃ %%2−6p̃ %p̃ %%%,

p9=3p̃ %%%+2
u0 %%3

u0 %3 , p10= −2(u0 %%2+u0 %u %%%p̃ %)−4u0 %u0 %%p̃ %%−u0 %2p̃ %%%

where u0 , u0 % and u0 %% can be computed with the quadratic shape functions once the numerical
values of u0 at the grid points are obtained in each iteration. The derivatives of the shape
functions, N %1, N %2, N %3 and N¦1, N¦2, N¦3 can be computed from Equation (35). It is worthwhile
to note that the special feature of this method is that the high-order derivatives of the
unknown function p̃ are expressed exactly or analytically in terms of lower-order derivatives,
and as many as required derivatives of the unknown function p̃ can be obtained analytically
without any difficulty.

Accordingly, the Jacobian matrix can be established.

Ã
Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Æ

È

Ã
Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ç

É

In these computations, the numerical value of p̃i at each grid point is initially set to zero, i.e.
there is no elevation of the free surface in the initial stage of the computation. The numerical

J=

1−g11

dp̃1

du0 1
−g12

dp̃2

du0 2
−g13

dp̃3

du0 3
··· −g1,2N+1

dp̃2N+1

du0 2N+1

−g21

dp̃1

du0 1
1−g22

dp̃2

du0 2
−g23

dp̃3

du0 3
··· −g2,2N+1

dp̃2N+1

du0 2N+1

−g31

dp̃1

du0 1
g32

dp̃2

du0 2
1−g33

dp̃3

du0 3
··· −g3,2N+1

dp̃2N+1

du0 2N+1

� � � � �

−g2N+1,1

dp̃1

du0 1
−g2N+1,2

dp̃2

du0 2
g2N+1,3

dp̃3

du0 3
··· 1−g2N+1,2N+1

dp̃2N+1

du0 2N+1

(42)
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values of the function u0 at the grid points on the free surface are thus computed. Then, the
function p̃ at the grid points on the free surface is obtained from either the integral method or
the differential method introduced previously, and the functions dp̃/dff and dp̃/du0 are
evaluated from Equations (31) and (38) respectively. Based on Equation (37), a subroutine,
namely LMDER1 from MINPACK2 of the NETLIB, is adopted to update the numerical
values of the function u0 at the grid points on the free surface until convergence.

For most cases, this subroutine produces a converged solution in the computation. The
typical rates of convergence of the numerical solutions with the Levenberg–Marquardt
algorithm are shown in Figures 9 and 14 in Section 5.

4.2.2. Bottom geometry. If the polygonal shape of the bottom in the z-plane is given (see Figure
4), based on its side lengths, l1, l2, . . . , lN

a
−1, the locations of the corresponding points

a2, a3, . . . , aN
a
−1 in the F( -plane to the vertices. A2, A3, . . . , AN

a
−1 may be assumed as shown

in Figure 6 at the beginning of the computation. Bearing in mind that the first vertex A1 maps
to a1=0 on the fb-axis in the F( -plane.

With the locations of a1, a2, . . . , aN
a
−1 and the angles, a1, a2, . . . , aN

a
, of the polygonal

surface in the z-plane, a system of non-linear equations of u0 and p̃ on the free surface in the
F( -plane (see Equation (37)) can be established and solved by the Levenberg–Marquardt
algorithm. Once the variables u0 and p̃ on the free surface in the F( -plane are determined, the
variable p̃ along the bottom fb in the F( -plane can be computed from a discretized form of
Equation (27). With the numerical values of both u0 and p̃ at the grid points along the fb-axis,
the mapping function z(fb, 0) shown in Equation (43), which maps the fb-axis in the F( -plane
to the bottom shape in the z-plane, can be evaluated.

z(fb, 0)=c+
& fb

−�

ep̃(t)+ iu0 (t) dt (43)

Figure 6. Initial locations of ai in the F( -plane.

2 Freely available at ftp://netlib.att.com/netlib/minpack
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Therefore, the locations of the vertices A %1, A %2, . . . , A %N
a

of the bottom shape produced by the
mapping function z(fb, 0) can be determined. The new locations, a %1, a %2, . . . , a %N

a
−1, of the

points, a1, a2, . . . , aN
a
−1, on the fb-axis can be thus determined from the side length ratios of

the two sets of vertices A %1, A %2, . . . , AN
a
−1, and A1, A2, . . . , AN

a
−1

a %i=a %1+ %
i−1

k=1

(ak+1−ak)
lk
l %k

, for i=2, 3, . . . , Na−1 (44)

where lk and l %k are the distances between vertices Ak and Ak+1, and A %k and Ak+1 respectively.
It is noted that a %1=0.

The whole process is repeated until the locations of a %2, a %3, . . . and a %N
a
−1 converge.

5. EXAMPLES

To test the numerical scheme developed in this research, three examples of supercritical flow
past polygonal obstructions are computed. The first example is taken from References [2,4] for
comparing the current numerical results with those of other researchers. The second example
is to test the sensitivity of the current computer code with respect to unsymmetrical triangular
obstructions, and the third example is a supercritical flow over a ramp with two different
heights and five different inclining angles, which is seldom dealt with in the published
literature. The elevations of the free surface as well as the pressure distributions along the
polygonal bottom are presented for these examples.

5.1. Example 1: supercritical flow o6er symmetric obstruction

In this example, three different cases of a supercritical flow past a symmetric triangular
obstruction, as shown in Figure 7, for two Froude numbers, Fn=
10 and 2, are computed.

In the computation, the free surface of the midstream (−10BffB10) in the F( -plane is
discretized into 100 elements. Typically, a converged solution is obtained within 100 iterations
with a root-mean-square (r.m.s.) difference (see below) of 10−13 for a set of ai, i=1, 2 and 3,
in the F( -plane (which are the corresponding points of the vertices A1, A2 and A3 of the
triangular obstruction in the z-plane). About ten iterations are required to obtain the desired
location of the vertices at the bottom in the z-plane with a relative error of 10−5. For

Figure 7. Supercritical flow over a triangular obstruction.
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Fn=
10, a comparison of the current numerical results with those of Boutros et al. [2] and
King et al. [4] for the elevation of free surface above the obstruction is shown in Figure 8.
Evidently, the current results for a=0.3 are in agreement with those of King et al. A typical
rate of convergence with the Levenberg–Marquardt algorithm is shown in Figure 9, where the
r.m.s. difference is defined as

r.m.s.=
1

2N+1
' %

2N+1

i=1

I i
2 (45)

where Ii is defined in Equation (37) and 2N+1 is the number of grid points distributed on the
free surface.

Due to the symmetrical nature of the triangular obstruction, the current numerical results
are more reasonable than those of Boutros et al. The pressure distributions along the arc
length of the bottom for these three cases are shown in Figure 10. It can be seen that the
pressure at the tip of the triangular obstruction tends to −� as the height of the triangular
obstruction increases and because of the symmetrical distribution of the pressure, there is no
net force acting on the triangular obstruction. Figure 11 shows the computational results of the
free surface elevations along the arc length of the bottom for Fn=2.

Figure 8. Free surface elevation for Fn=
10, a=b and l=0.59.
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Figure 9. Typical rate of convergence of Example 1 (a=0.3).

5.2. Example 2: supercritical flow o6er unsymmetric obstruction

In this example, five different cases of a supercritical flow past an unsymmetric triangular
obstruction similar to the configuration of the first example for Fn=
10 are considered.
Length l and angle a of the triangular obstruction are fixed and chosen to be 0.12930913 and
0.3 rad respectively. Five different heights of the triangular obstructions as shown in Table I
are computed. The free surface of the midstream (−10BffB10) in the F( -plane is discretized
into 100 elements. Typically, a converged solution is also obtained within 100 iterations with
an r.m.s. difference (see below) of 10−13 for a set of ai, i=1,2 and 3, in the F( -plane. About
ten iterations are required to obtain the desired location of the vertices at the bottom in the
z-plane with a relative error of 10−5. Figure 12 shows the computational results of the free
surface elevations along the arc length of the bottom for each case.

5.3. Example 3: supercritical flow o6er a ramp

The third example computes a supercritical flow over a ramp with two different heights,
h=0.4 and 0.6, and six different angles, a=15°, 30°, 45°, 60°, 75° and 90° as show n in Figure
13 for Froude number Fn=
10.

Similar to the previous example, 100 quadratic elements are used to discretize the free
surface (−16BffB16) in the F( -plane. A converged solution is obtained within about 100
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Figure 10. Pressure distribution along the arc length of the bottom for Fn=
10.

iterations with an r.m.s. of 10−11 for a set of a1 and a2 in the F( -plane (which are the
corresponding points of the vertices A1 and A2 of the ramp in the z-plane). About 15 iterations
are required to obtain the desired location of the vertices in the physical domain with a relative
error of 10−5. A typical rate of convergence is shown in Figure 14, which is for the case of
h=0.4 and a=45°.

The numerical results of the elevations of the free surface for h=0.4 and 0.6 are shown in
Figures 15 and 16 respectively.

Based on the number of iterations required for a converged numerical solution, the
supercritical flow over a ramp seems to be more difficult to compute than that over a
triangular obstruction. It may be due to the unsymmetric nature of the obstacle.

6. CONCLUSION AND REMARKS

In this research, the generalized Schwarz–Christoffel transformation associated with the
Hilbert transform is employed successfully to solve the supercritical flow over polygonal
obstructions. The excellent convergence shown in Figures 9 and 14 confirms that the boundary
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Figure 11. Free surface elevation for Fn=2, a=b and l=0.59.

Table I. Angles and lengths for Example 2.

a (rad) hCase No. b (rad)

0.30 0.0101 0.102748952
2 0.30 0.015 0.183513514

0.30 0.0203 0.300000000
0.30 0.0254 0.476018198
0.30 0.0305 0.748075597

integral equation and the free surface condition shown in Equations (28) and (31), are satisfied
almost exactly at all grid points on the ff-axis in the F( -plane. A typical numerical value for
the pressure on the free surface is in the order of 10−7.

From numerical experiments, it shows that

1. the differential and integral methods developed in Section 4 for treating the free surface
condition produce almost the same numerical results for the variables p̃ and u0 on the free
surface in the standard domain. Since there is a log term in the integral method, the
differential method may be more versatile for dealing with different types of non-linear free
surface problems;

2. through additional computations with 200 and 300 grid points distributed on the free
surface, the convergences of the numerical solution are almost the same as that shown in
Section 5, which verifies the numerical scheme developed in this paper is grid-independent.
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Figure 12. Free surface elevation for Fn=
10, a=0.3 and l=0.12930913.

Figure 13. Configuration of the ramp.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 745–772



J. M. CHUANG766

Figure 14. Rate of convergence for h=0.4, a=45°.

Also noted in this numerical scheme was that the standard domain is not truncated. The
only assumptions made are that

1. The numerical values of p̃ and u0 from −� to the first grid point in the midstream are the
same as those at the first grid point.

2. Similarly, the numerical values of p̃ and u0 from the last grid point in the midstream to �
are the same as those at the last grid point.

The second assumption is not applicable to the sub-critical flow due to the fact that the
waves will be generated in the downstream.

To validate the computational results of the discretized integral equation, the sum of each
row in the g matrix in Equation (36) can also be computed and should be almost equal to 0.
This is because the sum of each row in the g matrix is identical to

−
&�

−�

1

2 sinh
p

2
(ff−sf)

dsf= − log 1=0 (46)

It is independent of the location of the field point ff on the free surface in the midstream.
Similarly, if the physical domain has a curved solid boundary, the first integral in Equation
(28) has to be discretized as mentioned in Section 4.1, and the sum of each row in the h matrix
has to be approximately equal to 1, which is the value obtained from the exact integral of
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Figure 15. Supercritical flow over a ramp of Fn=
10, h=0.4.

&�
−�

1

2 cosh
p

2
(ff−sb)

dsb= −
1
p

[tan−1(−�)− tan−1�]=1 (47)

For low Froude numbers, such as 1BFnB2, a converged solution of the discretized integral
equation (36) becomes sensitive to the grid distribution on the free surface in the standard
domain. This is caused by the discontinuity of the derivatives of the quadratic shape functions
Ni, i=1, 2, 3, used by the variable u0 at the grid points where du0 /dff:0 and dp̃/du0 ��,
which is required to evaluate the Jacobian matrix for solving non-linear equations. Therefore,
the cubic spline shape functions with continuous first and second derivatives at each grid
points on the free surface are recommended for the low Froude numbers.

Due to the flexibility of the discretization technique for the boundary integral equation
associated with the differential method to impose the free surface condition, the numerical
scheme proposed in this research can be applied to solve a variety of two-dimensional fully
non-linear free surface flow problems in the engineering field, such as waterfalls, weir flows
and wave–body interactions. Furthermore, the orthogonal numerical grids generated from the
solution of the non-linear free surface flow can be used to solve a viscous flow problem with
a free surface.
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Figure 16. Supercritical flow over a ramp of Fn=
10, h=0.6.
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APPENDIX A. NUMERICAL COMPUTATION OF SINGULAR INTEGRALS

1. If i=1, g(i, i ) is expressed in the form

g(1, 1)= −
& sf 1

−�

1

2 sinh
p

2
(sf 1

−sf)
dsf−

& sf 2

sf 1

N1(g(sf))

2 sinh
p

2
(sf 1

−sf)
dsf

= −
& sf 2

sf 1

N1(g(sf))−1

2 sinh
p

2
(sf 1

−sf)
dsf−P.V.

& sf 2

−�

1

2 sinh
p

2
(sf1−sf)

dsf (48)

When sf�sf 1
, the limiting value of the integrand in the first integral on the right-hand side is
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lim
sf�sf 1

N1(g(sf))−1

2 sinh
p

2
(sf 1

−sf)
=

3
p(sf 2

−sf 1
)

(49)

The second integral on the right-hand side can be carried out analytically as follows:

P.V.
& sf 2

−�

1

2 sinh
p

2
(sf 1

−sf)
dsf= −

1
p

log
�

tanh
p

4
(sf 2

−sf 1
)
n

(50)

As a result, g(1, 1) is reduced to

g(1, 1)= −
& sf 2

sf 1

N1(g(sf))−1

2 sinh
p

2
(sf 1

−sf)
dsf+

1
p

log
�

tanh
p

4
(sf 2

−sf 1
)
n

(51)

2. If i=3, 5, 7, . . . , 2N−1 (odd number), g(i, i ) is given by

g(i, i )= −
& sfj

sfj−1

N3(g(sf))

2 sinh
p

2
(sf 1

−sf)
dsf−

& sfj+1

sfj

N1(g(sf))

2 sinh
p

2
(sf 1

−sf)
dsf

= −
& sfj

sfj−1

N3(g(sf))−1

2 sinh
p

2
(sfj

−sf)
dsf−

& sfj+1

sfj

N1(g(sf))−1

2 sinh
p

2
(sfj

−sf)
dsf

−P.V.
& sfj+1

sfj−1

1

2 sinh
p

2
(sfj

−sf)
dsf (52)

When sf�sfj
, the limiting values of the integrand in the first and second integrals on the

right-hand side can be easily derived as

lim
sf�sfj

N3(g(sf))−1

2 sinh
p

2
(sfj

−sf)
= −

3
p(sfj−1

−sfj
)

lim
sf�sfj

N1(g(sf))−1

2 sinh
p

2
(sfj

−sf)
=

3
p(sfj+1

−sfj
)

The last integral on the right-hand side of Equation (52) can be carried out analytically,
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P.V.
& sfj+1

sfj−1

1

2 sinh
p

2
(sfj

−sf)
dsf= −

1
p

logÃ
Ã

Ã

Æ

È

tanh
p

4
(sfj+1

−sfj
)

tanh
p

4
(sfj

−sfj−1
)
Ã
Ã

Ã

Ç

É
(53)

Consequently, g(i, i ) becomes

g(i, i )= −
& sfj

sfj−1

N3(g(sf))−1

2 sinh
p

2
(sfj

−sf)
dsf−

& sfj+1

sfj

N1(g(sf))−1

2 sinh
p

2
(sfj

−sf)
dsf

+
1
p

logÃ
Ã

Ã

Æ

È

tanh
p

4
(sfj+1

−sfj
)

tanh
p

4
(sfj

−sfj−1
)
Ã
Ã

Ã

Ç

É
(54)

3. If i=2, 4, 6, . . . , 2N (even number), g(i, i ) takes the form of

g(i, i )= −
& sfj+1

sfj

N2(g(sf))

2 sinh
p

2
�1

2
(sfj

+sfj+1
)−sf

n dsf=−
& sfj+1

sfj

N2(g(sf))−1

2 sinh
p

2
�1

2
(sfj

+sfj+1
)−sf

n dsf

−P.V.
& sfj+1

sfj

1

2 sinh
p

2
�1

2
(sfj

+sfj+1
)−sf

n dsf (55)

When sf�
1
2(sfj

+sfj+1
), the limiting value of the integrand in the first integral on the right-hand

side is found to be zero, i.e.

lim
sf�

1

2
(sfj

+sfj+1
)

N2(g(sf))−1

2 sinh
p

2
�1

2
(sfj

+sfj+1
)−sf

�=0 (56)

The second integral on the right-hand side can be carried out analytically,

P.V.
& sfj+1

sfj

1

2 sinh
p

2
�1

2
(sfj

+sfj+1
)−sf

� dsf= −
1
p

logÍ
Ã

Ã

Á

Ä

tanh
p

4
�

sfj+1
−

1
2

(sfj
+sfj+1

)
n

tanh
p

4
�1

2
[(sfj

+sfj+1
)−sfj

]
�ÌÃÃ
Â

Å
(57)
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Therefore, in this case, g(i, i ) reads

g(i, i )= −
& sfj+1

sfj

N2(g(sf))−1

2 sinh
p

2
�1

2
(sfj

+sfj+1
)−sf

n dsf (58)

4. If i=2N+1, g(i, i ) is expressed as

g(2N+1, 2N+1)= −
& sfN+1

sfN

N3(g(sf))

2 sinh
p

2
(sfN+1

−sf)
dsf−

&�
sfN+1

1

2 sinh
p

2
(sfN+1

−sf)
dsf

= −
& sfN+1

sfN

N3(g(sf))−1

2 sinh
p

2
(sfN+1

−sf)
dsf−P.V.

&�
sfN

1

2 sinh
p

2
(sfN+1

−sf)
dsf

(59)

When sf�sfN+1
, the limiting value of the integrand in the first integral on the right-hand side

is shown in Equation (60),

lim
sf�sf 1

N3(g(sf))−1

2 sinh
p

2
(sfN+1

−sf)
= −

3
p(sfN+1

−sfN
)

(60)

The second integral on the right-hand side, as usual, can be carried out analytically,

P.V.
&�

sf
N

1

2 sinh
p

2
(sf 1

−sf)
dsf=

1
p

log
�

tanh
p

4
(sfN+1

−sfN
)
n

(61)

Hence, g(i, i ) becomes

g(N+1, N+1)= −
& sfN+1

sfN

N3(g(sf))−1

2 sinh
p

2
(sfN+1

−sf)
dsf−

1
p

log
�

tanh
p

4
(sfN+1

−sfN
)
n

(62)
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